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Abstract. In this paper, inspired from our previous algorithm, which was based on the theory of Tsallis
statistical mechanics, we develop a new evolving stochastic learning algorithm for neural networks. The new
algorithm combines deterministic and stochastic search steps by employing a different adaptive stepsize for
each network weight, and applies a form of noise that is characterized by the nonextensive entropic index
q, regulated by a weight decay term. The behavior of the learning algorithm can be made more stochastic
or deterministic depending on the trade off between the temperature T and the q values. This is achieved
by introducing a formula that defines a time-dependent relationship between these two important learning
parameters. Our experimental study verifies that there are indeed improvements in the convergence speed
of this new evolving stochastic learning algorithm, which makes learning faster than using the original
Hybrid Learning Scheme (HLS). In addition, experiments are conducted to explore the influence of the
entropic index q and temperature T on the convergence speed and stability of the proposed method.

PACS. 07.05.Mh Neural networks, fuzzy logic, artificial intelligence – 87.18.Sn Neural networks – 05.10.-a
Computational methods in statistical physics and nonlinear dynamics

1 Introduction

Neural networks are widely used in many classification
applications. One of the major key concept in neural net-
works is the interaction between microscopic and macro-
scopic phenomena. The goal of Feedforward Neural Net-
work (FNN) learning is to iteratively adjust the weights,
in order to globally minimize a measure of the difference
between the actual output of the network and the desired
output, as specified by a teacher, for all examples (P ) in
a training set [1]:

E(w) =
P∑

p=1

nL∑

j=1

(
yL

j,p − tj,p
)2

=
P∑

p=1

nL∑

j=1

[
σL

(
netLj + θL

j

) − tj,p
]2

. (1)

where, netLj is for the jth node in the Lth layer (j =
1, . . . , nL), the sum of its weighted inputs. θL

j denotes
the bias of the jth node (j = 1, . . . , Nl) at the Lth layer
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(l = 2, . . . , L), and w denotes the weights w in the net-
work. This equation formulates the energy function, called
error function, to be minimized, in which tj,p specifies the
desired response at the jth output node for the example p
and yL

j,p is the output of the jth node at layer L that
depends on the weights w of the network, and σ is a non-
linear activation function, such as the well known logistic
function σ(x) = (1 + e−x)−1. The problem of finding the
global minimum of such a complex cost function, which
possesses a large number of local minima, is considered
very difficult task [1].

Statistical mechanics methods have been applied suc-
cessfully to the study of neural network models of associa-
tive memory [2]. These models are biologically plausible
and can be trained very quickly in some cases, compared
with the popular neural networks such as multi-layered
perceptron, which have been shown to work satisfactorily.
However, this model of associative memory has still draw-
backs as learning gets stuck at local minima. A variety of
global optimization algorithms have also been introduced
over the years to overcome the problem of local minima.
One of the most popular methods is the Simulated an-
nealing [3]. It uses Boltzmann-Gibbs (BG) statistics at
two different steps, namely at the visitation step, which
uses a Gaussian distribution, and at the acceptance step,
that uses the Boltzmann factor [4,5].
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Another approach is based on the use of noise models.
Attempts to explore the benefits of introducing noise dur-
ing learning have been based on the use of Gaussian distri-
butions [4,6,7]. One of the most famous neural model op-
erating with noise is the Boltzmann machine [4,5], inspired
by the Boltzman-Gibbs entropy SBG = −K

∑
i pi ln pi

that provides exponential laws for describing stationary
states and basic time-dependent phenomena, where {pi}
are the probabilities of the microscopic configurations, and
K > 0. Also, a form of Langevin noise has been proved
quite effective for neural learning, and has motivated the
development of other methods, such as the Simulated An-
nealing Rprop-SARprop [8].

The next section briefly describes the recently pro-
posed hybrid learning scheme [9], and then we introduce
the proposed evolving stochastic learning algorithm. Next,
results of an empirical evaluation are presented, demon-
strating the effectiveness of the new scheme in locating
acceptable solutions. The paper ends with discussion and
concluding remarks.

2 The Evolving Stochastic Learning
Algorithm

The recently proposed Hybrid Learning Scheme (HLS) [9]
has been built on ideas from global search methods. It is
worth noting that global search algorithms possess strong
convergence properties. However, these methods are com-
putationally expensive [8]. To alleviate this situation hy-
brid schemes for neural networks learning have been devel-
oped in an attempt to achieve improved convergence rates
compared to the standard global optimization, and in
some cases even maintain the guarantee of convergence to
a global minimizer [6]. HLS is a hybrid training algorithm
that employs a different adaptive stepsize for each weight.
HLS avoids slow convergence in the flat directions and
oscillations in the steep directions, and exploits the par-
allelism inherent in the evaluation of learning error E(w)
and gradient ∇E(w) by the Resilient Back-Propagation
(Rprop) algorithm [10]. Inspired by [6,11], in the HLS,
noise has been introduced in the training procedure ac-
cording to a nonextensive schedule [9]. The HLS also ap-
plies the sign-based weight adjustment of Rprop [10], on
the perturbed energy function (for a detailed description
see [9]).

The new Evolving Stochastic Learning Algo-
rithm (ESLA) introduces noise, as in HLS. The noise
source is characterized by the nonextensive entropic
index q. In particular, the principles of the new method
are using the notion of nonextensive entropy, which has
been defined as [12]:

Sq ≡ K
1 − ∑W

i=1 pq
i

q − 1
(q ∈ R), (2)

where W is the total number of microscopic configura-
tions, whose probabilities are {pi}, and K is a conventional
positive constant. When the entropic index q = 1, (2) re-
covers to Boltzmann-Gibbs entropy. The entropic index

works like a biasing parameter: q < 1 privileges rare events
(values of p close to 0 are benefited), while q > 1 privileges
common events (values of p close to 1). The optimization
of the entropic form (2) under appropriate constraints [12],
yields for the canonical ensemble

pi ∝ [1 − (1 − q)βEi]
1

(1−q) ≡ e−βEi
q , (3)

where β is a Lagrange parameter, {Ei} is the energy spec-
trum, and the q-exponential function

ex
q ≡ [1 + (1 − q)x]

1
(1−q) =

1

[1 − (q − 1)x]
1

(q−1)
. (4)

In this method, like in the HLS, noise is generated accord-
ing to a schedule:

Q(T, k) = e−T (ln 2)·k
q = [1 − (1 − q)T (ln 2) · k]

1
1−q , (5)

where T is the temperature; k indicates iterations. Noise
is not applied proportionally to the size of each weight;
instead a form of weight decay is used, which is consid-
ered beneficial for achieving a robust neural network that
generalizes well. Thus, noise is introduced by formulating
the perturbed energy function:

Ẽ(wk) = E(wk) + µ ·
n∑

i=1

(wk
i )2

[1 + (wk
i )2]

· Q(T, k), (6)

where E(w) is the error function,
∑

i w2
i /(1 + w2

i ) is the
weight decay bias term which can decay small weights
more rapidly than large weights, and µ is a parameter
that regulates the influence of the combined weight de-
cay/noise effect. The energy landscape is modified during
training so the search method is allowed to explore re-
gions of the energy surface that were previously unavail-
able. Minimization of equation (6) requires calculating the
gradient of the energy with respect to each weight

g̃i(wk) = gi(wk) + µ́ · wk
i

[1 + (wk
i )2]

2 · Q(T, k), (7)

where gi(wk) is the gradient of the energy E(wk), with
respect to each weight, and µ́ > 0 (in our experiments a
fixed value of µ́ = 0.01 was used). The proposed evolv-
ing stochastic hybrid scheme applies a sign-based weight
adjustment, similar to HLS [9], on the perturbed en-
ergy function (6) using the gradient term of equation (7).
Also the learning rates are adapted by Rprop learning
procedure [10].

In our approach the weight adjustment is given by the
following equation:

wk+1 = wk − τk diag{ηk
1 , . . . , ηk

i , . . . , ηk
n} sign(g̃i(wk)),

k = 0, 1, . . . (8)

where sign(g̃i(wk)) denotes the column vector of the signs
of the components of g̃(wk) = (g̃1(wk), g̃2(wk), . . .,
g̃n(wk)), τk > 0, ηk

m (m = 1, 2, . . . , i − 1, i + 1, . . . , n) are
small positive real numbers generated by Rprop’s learning
rates schedule.



A.D. Anastasiadis and G.D. Magoulas: Evolving Stochastic Learning Algorithm based on Tsallis entropic index 279

−0.1 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
−5

−4

−3

−2

−1

0

1

2

3

4

5

W1

W
2

−0.1 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
−5

−4

−3

−2

−1

0

1

2

3

4

5

W1
W

2
−0.1 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
−5

−4

−3

−2

−1

0

1

2

3

4

5

W1

W
2

Fig. 1. Weights trajectories of the Evolving Stochastic Learning Algorithm-ESLA (left), the Hybrid Learning Scheme-HLS
(center), and the Rprop (right).

Moreover, an additional condition, like in the HLS, is
introduced in order to avoid using relatively small weight
adjustments

if
(
ηk−1

i < ρ · Q2(T, k)
)

then

ηk
i = max

(
ηk−1

i η− + 2cρ · Q2(T, k), ∆min

)
, (9)

where 0 < ρ < 1 and c ∈ (0, 1) is a random number.
Lastly, inspired from previous work [11], we apply a

cooling procedure. This defines the relationship between
T and q values. The application of cooling helps to regu-
late the training algorithm, making it more deterministic.
This new Evolving Stochastic Learning Algorithm-ESLA
behaves in a more stochastic way, during the initial stages,
and then becomes more deterministic as the number of
iterations increases. Thus, when we are close to the mini-
mizer, the algorithm hopefully will avoid oscillations and
converge faster. The cooling procedure is described by the
next equation:

T = T0 ·
[

2q−1 − 1
(1 + k)q−1 − 1

]
, q > 1 (10)

where T0 is the initial temperature, T is the current tem-
perature, k is the number of iterations, and q is the Tsallis
entropic index.

The challenge is to cool the temperature the quickest
we can, but still having the ability to converge to global
minimum with high probability. The standard simulated
annealing (SA) is one method to achieve this goal. How-
ever, the cooling procedure is computationally expensive.
An efficient alternative cooling method is the fast sim-
ulated annealing (FSA) [13]. The temperature is now al-
lowed to decrease like the inverse of time, which makes the
entire cooling procedure quite more efficient. Generalised
Simulated annealing (GSA) [11] is a generalization of the
previous methods, which performs better than previous
annealing algorithms for many problems and applications.
In neural networks applications we are mainly interested
in accelerating the learning speed with no affect in gen-
eralization. The cooling procedure based on GSA satisfies
these two targets and contributes positively to the per-
formance of the ESLA. This cooling procedure makes the
temperature to decrease as a power-law of time, in con-
trast to the much slower decrease (logarithmic in time) of
the q = 1 case.

Below, a simple problem is used to visualize the behav-
ior of the ESLA and compare it with the HLS, and the
Rprop algorithm. The energy landscape of Figure 1 has
a global minimum and two local minima. Figure 1 shows
that under the same initial conditions, both of the ESLA
and the HLS escape the saddle point and the valley that
leads to a local minimum, while the ESLA converges faster
than HLS with fewer oscillations (Fig. 1, left), and the
Rprop algorithm converges to the local minimizer (Fig. 1,
right).

3 Experimental study

We have evaluated the performance of the ESLA and com-
pared it with the Rprop, and the HLS algorithms. The sta-
tistical significance of the results has been analyzed using
the Wilcoxon test [14]. This is a nonparametric method
that is considered an alternative to the paired t-test. All
statements in the tables reported below, refer to a sig-
nificance level of 0.05. Statistically significant cases are
marked with (+), while (−) shows the cases that don’t sat-
isfy the significance level. Moreover, the following terms
are used: Epochs is the number of iterations to converge
to the error target; Convergence denotes the success of
convergence to the error target within 2000 iterations;
Generalization is the percentage of correctly classified
test examples. Finally, for all the problems we have set
the initial temperature to T = 2 for training using the
ESLA. By keeping constant the initial temperature we
found the optimal value for the Tsallis entropic index q.
The parameters of the HLS were set to the same values as
in the ESLA for all experiments in an attempt to test the
robustness of the method in different types of problems:
the temperature is equal to the initial temperature T = 2,
and the q is set to different values depending on the prob-
lem, (i.e. in cancer T = 2 and q = 1.7, while in diabetes is
q = 1.6). Below, we report results from 300 independent
trials. These 300 random weight initializations have been
the same for the three learning algorithms.

3.1 Benchmarks from the UCI repository

The data sets for the cancer1, diabetes1, thyroid1 prob-
lems were used as supplied on the PROBEN1 web-
site. PROBEN1 provides explicit instructions for creating
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Fig. 2. Optimal q based on Epochs, and Generalization for the diabetes and cancer problems.

Table 1. Comparison of algorithms performance in the Diabetes and Cancer problems for the converged runs.

Diabetes Cancer

Algorithm Epochs Generalization Convergence Epochs Generalization Convergence

Rprop 700 (+) 75.2 (%) (+) 86 (%) (+) 287 (+) 97.2(%) (−) 94(%) (+)

HLS 570 (+) 75.8 (%) (+) 94 (%) (−) 230 (+) 97.4(%) (−) 96(%) (+)

ESLA 480 76.2 (%) 95 (%) 195 97.4(%) 99(%)

training and testing sets and choosing network architec-
tures for many problems [15]. The partitioning is 50% of
the full data is used as training set, then the next 25% of
the dataset is used as validation set, and the remaining
25% as testing set. The diabetes1 benchmark is a real-
world classification task which concerns deciding when a
Pima Indian individual is diabetes positive or not [16,15].
The Proben1 collection suggests a 8–2–2–2 FNN. The ter-
mination criterion is E ≤ 0.14 within 2000 iterations. In
order to find the best value for the initial temperature
and the Tsallis entropic index q, we performed 30 differ-
ent runs. Figure 2 shows the ESLA’s performance for an
initial temperature T = 2 and different q values. Judg-
ing from Figure 2 the best value for q = 1.6, and T = 2.
Table 1 shows that the Rprop algorithm converges many
times in local minima. The new stochastic learning algo-
rithm overcomes this problem in most of the cases. The
cooling procedure seems to have a positive impact on the

learning speed of the algorithm. The second benchmark
is the breast cancer diagnosis problem which classifies a
tumor as benign or malignant based on 9 features [16,15].
We have used an FNN with 9–4–2–2 nodes, as suggested
in [15], and a termination criterion of E ≤ 0.02. Figure 2
shows the best values of these two important training pa-
rameters. As we can observe from this figure, a value of
the q = 1.7 gives the best results in terms of both learn-
ing speed and generalization. The comparative results are
presented in Table 1.

The third benchmark problem is the thyroid1, which
is not a permutation of the original data, but retains the
original order instead [16,15]. The data set consists of
3600 patterns. The termination criterion is E ≤ 0.0036.
The Tsallis entropic index q in this problem is again
q = 1.7 (see Fig. 3). The experimental results that we
obtained are presented in Table 2.
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Table 2. Comparison of algorithms performance in the Thyroid and Yeast problems for the converged runs.

Thyroid Yeast
Algorithm Epochs Generalization Convergence Epochs Generalization Convergence
Rprop 780 (+) 98.2 (%) (−) 81.3 (%) (+) 930 (+) 61.6 (%) (−) 98 (%) (−)
HLS 590 (+) 98.1 (%) (−) 94.0 (%) (−) 590 (+) 61.4 (%) (−) 100 (%) (−)
ESLA 500 98.0 (%) 95.3 (%) 490 61.5 (%) 100 (%)
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Fig. 3. Optimal q based on Epochs, and Generalization for the thyroid and Yeast problems.

3.2 Prediction of localisation sites of the Yeast
proteins

The study of protein localization is considered very use-
ful in the post-genomics and proteomics era, as it pro-
vides information about each protein that is complemen-
tary to the protein sequence and structure data [17]. One
of the most thoroughly studied single-cell organisms is the
eukaryote Saccharomyces cerevisiae, also called Yeast. It
has rapid growth rate and very simple nutritional require-
ments [18]. The Yeast dataset is 1484 proteins labeled ac-
cording to 10 sites [19]. Yeast proteins are organized as
in [16]. The most suitable architecture for this problem,
as suggested by [20], is an 8–16–10 FNN architecture. A
termination criterion of E ≤ 0.05 within 2000 iterations
(Epochs) is used. The evaluation method that we have
employed to estimate the accuracy of the methods was a
10-fold cross validation following the guidelines of [19,20].

The proportion of the number of the patterns for all the
classes is equal in each partition, as this procedure pro-
vides more accurate results than a plain cross validation
does [21]. Figure 3 gives an overview of the experiments
conducted in order to choose the best value of q for this
problem. A value of q = 1.6 was applied as this gave the
best results in terms of learning speed and generalization.
Table 2 shows the experimental results for this difficult
problem.

3.3 Boolean function approximation problems

Another set of experiments has been conducted to em-
pirically evaluate the performance of the new method in a
well-studied class of boolean function approximation prob-
lems that exhibit strong local minima [22]. This class in-
cludes the XOR problem, and the parity-3 problem, which
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Table 3. Comparison of algorithms performance in the XOR and Parity 3 problems for the converged runs.

XOR Parity 3

Algorithm Epochs Generalization Convergence Epochs Generalization Convergence

Rprop 120 (+) 100 (%) (−) 59 (%) (+) 877 (+) 100 (%) (−) 74 (%) (+)

HLS 80 (+) 100 (%) (−) 68 (%) (−) 430 (+) 100 (%) (−) 78 (%) (+)

ESLA 70 100 (%) 64 (%) 390 100 (%) 81 (%)

is considered as classic benchmarks [9,8]. The adopted ar-
chitectures for the XOR problem is a 2–2–1, and the er-
ror target was set to E ≤ 10−5. A 3–3–1 architecture was
used for the parity-3 problem. The error target for parity-3
problem was set to E ≤ 5× 10−5. The activation function
for this problem is the tansig function. These target values
are considered low enough to guarantee convergence to a
“global” solution.

By applying the same procedure as before, the best q
entropic index value for the XOR problem is q = 2.1, and
for the parity 3 problem is q = 1.1 with initial temper-
ature T = 2. Table 3 shows that the ESLA outperforms
in convergence speed. The HLS achieves the best Conver-
gence success on XOR problem. However, the ESLA has
better convergence performance compared to Rprop.

4 Discussion and concluding remarks

A recently introduced training algorithm, the hybrid
learning scheme-HLS achieves generally very good and
reliable performance, and improved learning speed com-
pared to the Rprop algorithm. In this paper, we proposed
a new evolving stochastic learning scheme, which consti-
tutes an efficient improvement of the HLS algorithm that
is built on a theoretical basis. The ESLA combines de-
terministic and stochastic search by employing a different
adaptive stepsize for each weight, and a form of noise that
is characterized by the nonextensive entropic index q. An
adaptive formula that introduces a relationship between
the T and q was applied. Our experimental study showed
that there is a range of q values (1.1 < q < 2.3) that gives
good performance for the new learning scheme.

In the previous tables, results are based only on the
converged runs. Therefore, we don’t have the actual per-
formance description of the tested algorithms (i.e. in thy-
roid problem the Rprop algorithm achieves the best mean
generalization success. However, its convergence success
is the worst within the tested algorithms. Therefore, the
convergence results present the Rprop’s generalization for
the 0.813 · 300 = 244 runs out of 300, while the mean gen-
eralization success of ESLA is based on 0.953 · 300 = 286
runs out of 300). In this case it is better to have results
for more runs (i.e. patients) although the generalization
success is slightly worse. In order to have better view of
the overall performance of the tested algorithms, we intro-
duce the parameter Performance, which is defined as fol-
lows: Performance = (Convergence)×(Generalisation)

100 . Thus,

Table 4. Summary of the results in terms of the algorithms’
performance.

Performance Algorithms

Problems Rprop (% ) HLS (%) ESLA (%)

Diabetes 64.7 71.2 72.4

Cancer 91.4 93.5 96.4

Thyroid 79.8 92.3 93.6

Yeast 60.3 61.4 61.5

XOR 59.0 68.0 64.0

Parity-3 74.0 78.0 81.0

Table 4 gives a summary of our results from this perspec-
tive for all the tested algorithms.

Further testing is of course necessary to fully explore
the advantages and identify possible limitations of this
cooling evolving scheme. Moreover, exhaustive testing of
the new method in other classes of problems will be done.
We will also investigate the performance of ESLA in a
restarting mode. Finally, we are going to explore further
the properties of Tsallis entropy into Optimization meth-
ods in Artificial Intelligence applications.

Aristoklis Anastasiadis would like to thank Dr. G. Kaniadakis
and would also like to address special thanks to Prof. Con-
stantino Tsallis for very helpful discussions related to this work,
during his stay as research visitor at the Santa Fe Institute.
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